Fire Weather, Fuels, and Other Fiery Things

Dr. Adam Coates

Virginia Tech

Thursday, May 10, 2018

Today's Objectives

Tom Yawkey Wildlife Center, Georgetown, SC March 2015

- Personal introduction
- My fire story
- Fire triangles and fire behavior
- Prescribed fire ignition strategies
- Questions

Personal Introduction

- BS (2003), MS (2006), Ph.D. (2017) all in Forest Resources from Clemson University
- Married with three kids (Sam 8, Kate – 5, Natalie – 3)
- Spent time working in research, production agriculture, and nonprofits

Image: www.nal.usda.gov/exhibits/speccoll/files/original/16d2c82620b322a1c57d4d18b3289ebe.jpg

Fire story

North Carolina SBR FLN, August 2017

- I was introduced to wildland fire ecology as a freshman at Clemson University
- A professor described a "fire planet"
- Table Mountain Pine communities

Image: slate.com

Pictures of Table Mountain Pine

Image: conifersociety.org

Image: National Park Service Table Mt Pine post-fire

Unique features of Table Mountain Pine

- Fire aids the regeneration of Table Mountain pine in several ways. It:
 - opens the **serotinous** cones
 - consumes leaf litter
 - exposes mineral soil
 - eliminates competing vegetation (allowing more light and water for pine seedlings)

Reference: https://www.fs.fed.us/database/feis/plants/tree/pinpun/all.html

We aren't talking about small fires, either!

a. Table Mountain Pine with SPB

b. Table Mountain Pine burning

Image: http://kelab.tamu.edu/standard/waldron/

The more I began to learn...

- Fire has been part of the historic landscape for centuries
- We live on a "fire planet"
- How can that be?

Image: NASA Fires of October 2016

Mean Fire Interval Prior to 1850

Image: wildfiretoday.com/wp-content/uploads/2015/06/map-fire-freq.jpg

Fire requires <u>heat (ignition source), oxygen, &</u> <u>fuel</u>

- At any point in time, generally two of these are readily available
- Which portion of the fire triangle is most under our control?

Fire Triangle

Image: idahofirewise.org/wildfire-ignition-behavior-and-effects/

Fire

- Fire is a chemical reaction
- In a sense, fire breaks down what photosynthesis puts together
- It speeds up decomposition, a natural process

Image: carleton.edu

Natural process

Image: Daily Mail

- Do not forget that combustion is simply an acceleration of decomposition
 - Decomposition may take years/decades/centuries
 - Fire can accelerate that, decrease turnover time to minutes/hours

• Disturbances are part of our natural systems

Pioneer, intermediate, climax

Image: vle.du.ac.in/mod/book/print.php?id=11170#ch21085

What is the typical trajectory of succession?

Image: Lake Conestee Nature Park

Fire Behavior: more specific to each location

Figure 1.1 Fire triangles. The importance of different elements of fire is shown in relation to different scales, from the initial starting of a fire to the controls on fire in deep time. (This figure is compiled from a range of different authors' work including S. Pyne, M. Oritz, C. Whitlock, A. C. Scott).

Image: Scott et al. Fire on Earth, 2014

Terminology: Intensity & Severity

Fire Intensity

- Related to energy release
- Most common metric is flame length at the flaming front of a fire
- May or may not be related to peak burning temperature
 - All flames approximate 1100 1300°C at their tips

Fire Severity

- Related to degree of charring
- Most common metric is organic matter loss (i.e. duff consumption – exposure of mineral soil)

Forest soils are unique

O horizon Loose and partly decayed organic matter A horizon Mineral matter mixed with some humus E horizon Light colored mineral particles. Zone of eluviation and leaching B horizon Accumulation of clay transported from above C horizon Partially altered parent material Unweathered parent material

- O Horizon material in a forest soil is unique
- It contains leaves and needles at varying stages of decomposition
- The consumption of this O Horizon material is monitored to determine more of what a specific fire does to ecosystem properties and processes

Image: ISU.edu

Highs & Lows

- You can also have: • High intensity/high severity High Wildfires in California grasslands in Autumn 2003 Intensity Low intensity/low severity • Burning biennially in longleaf pine in dormant Low season
 - Severity

Low

High

High Variability

- What will "most likely happen" in a given fire is subject to change no fire is exactly like another
- In fact, no one area that burns is exactly like another area that burns in the **SAME BURN**
- What affects these "micro-site" differences?

Highs & Lows

- You can have high severity with low intensity
- Vice versa, you can have high intensity with low severity
- Let's think about those scenarios:

What about burning in a longleaf pine – wiregrass stand burned every 5 years with wind at its back?

>What about burning in a dried out swamp with peat accumulation?

Fire behavior

- Fire is unique in the sense that each fire is different
- Just because I tell you I have a fire, that doesn't mean all of the fire effects will be the same
- In fact, one location within a given fire can be burning differently than another location within the same fire

Fire Environment (Behavior) Triangle

<u>FUEL</u>

- Fuel has to be present for fire to happen
- But what else matters about fuel?
 - Type
 - Amount
 - Composition

Image: EPA

Fuels

Santee Experimental Forest Cordesville, SC - 2015

- What might we consider to be fuel for a fire?
 - Smaller, live vegetation
 - Leaf litter and needles
 - Woody debris (stick, twigs, logs)

Fuel measurements

Image: Stottlemyer, 2004

- This is where landform, terrain shape, and ecology come into play
- Fuel type makes a difference
- "Just because it's leaves mean it burns the same"
 - Example: Pine needles vs. oak leaves
 - What properties separate these two?

Santee Experimental Forest Cordesville, SC - 2015

Four fire treatments

Long-term, unburned One replication 6.5 ha (16 acres)

Annual dormant Three replications 1-2 ha/replication

Biennial dormant Three replications 1-2 ha/replication

Annual growing Three replications 1-2 ha/replication

Unmanaged watershed 46.35 m² ha⁻¹ 41% loblolly pine BA 59% hardwood BA Managed watershed 33.72 m² ha⁻¹ 84% loblolly pine BA 16% hardwood BA

Common hardwood species on both watersheds: multiple oak species, sweetgum, maple

Fuel Models (Anderson 1982)

Fuel Model

Anderson, Hal E 1982. Aids to determining fuel models for estimating fire behavior. USDA Forest Service General Technical Report INT-122. 22 p.

Description

1	Grass	11	Light Slash
2	Pine/Grass	12	Medium Slash
3	Tall Grass	13	Heavy Slash
4	Tall Chaparral	14	Plantation/Burned last 1
5	Brush	15	Desert
6	Dormant Brush	28	Urban
7	Rough	97	Agricultural Lands
8	Hardwood/Lodgepole Pine	98	Water
9	Mixed Conifer Light	99	Barren/Rock/Other

10 Mixed Comfer Medium

5 years

 Tallies of fuels over time in the same geographic area have been utilized to create fuel models

- Picture models were developed in the 1980s and 1990s
- GIS has advanced that a step further

Fire Behavior/Environment

TOPOGRAPHY

- Did you know fire travels faster up a hillside?
- Why is that?
- This is because the flames can easily reach more unburnt fuel in front of the fire. Radiant heat *pre-heats* the fuel in front of the fire, making the fuel even more flammable

- Wildland firefighters get in trouble when a fire gets behind them on a slope
- Generally 20% of annual firefighter deaths occur because of "fire behavior changes"
- Ex. South Canyon Fire, 1994

Figure 2-The annual death toll for persons who died during wildland fire operations from 1990 to 2006 (310 total deaths).

Fire Behavior/Environment

Weather

- Relative humidity
- Wind speed
- Wind direction
- Moisture
 - Fuel moisture
 - Soil moisture
- Season
- Dew point
- Ambient temperature

Preferred Rx Fire Conditions

- 1-3 mph winds
- 30-55 relative humidity
- Winter temperature < 60F
- Soil moisture: damp
- Fine fuel moisture: 10-20%
- Atmosphere slightly unstable or neutral
- Mixing ht.: 1700-6500 ft.
- Transport windspeed: 9-20 mph

High fuel moistures produce lots of smoke

Stable conditions or a low mixing height keep smoke near the ground

Unstable conditions and/or a high mixing height provide for rapid smoke dispersion

Image: Wade 1989

- Smoke management is the main concern that will delay prescribed burns
- Ex. Charleston/Santee Experimental Forest, 2015
- Weather has a huge impact on smoke

Florida wildfire, 1998

Red Flag Conditions in VA

- 10-hr fuel moisture: 7% or less
- Wind speed: 20 mph or greater
- Relative humidity: 30% or less

Image: WGBA

Common Fire Descriptions

- <u>Surface fire</u>: fire that burns only surface fuels such as litter, other loose debris on the soil surface, and small vegetation
- <u>Ground fire</u>: fire that burns the organic matter in the soil layer that supports glowing combustion
- <u>Crown fire</u>: fire that advances from top to top of trees/shrubs more or less independently of the surface fire
- <u>Stand replacing fire</u>: fire that kills all or most living overstory trees in a forest and initiates secondary succession or regrowth
 - Usually a combination of all of the above (surface, ground, and crown)

Fuel structure plays a role

builds up: There's surface fuel (grass, logs, woody debris, brush); ladder fuel (shrubs, small trees, snags); and tree crowns.

- Surface fires spread quickly through brush and woody debris.
- Ladder fuels allow the fire to move up toward the forest canopy.
- Tree crown fires are so intense, they're difficult to control.

Examples: Surface fires

WOWSlider.com

Examples: Ground fire

Examples: Crown fire

Examples: Stand replacement fire

What has fire accomplished here?

Burned multiple times in 12 years

Unburned

Image: Coates, 2017

414 Annual Growing Replication 1

Burning along the coastal plain

Less than one month post-fire at Tom Yawkey Wildlife Center, April 2016

Stand has been burned 4 times in 5 years

Ignition techniques

- Drip torch introduction
- Prescribed fire introduction
- Flank fire
- <u>Ring fire</u>
- Aerial ignition
- <u>Aerial ignition 2</u>
- <u>How to use multiple ignition</u> <u>types</u>
- Excellent boundary video

Image: inciweb.mwcg.gov

Image: ammlcc.myblog.arts.ac.uk

Contact information

Dr. Adam Coates 228F Cheatham Hall 310 West Campus Dr. (540) 231-5676 acoates4@vt.edu

